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An experimental study of the spatial features of Rayleigh-Be'nard convection in a 
small box is presented. Experiments are carried out in a rectangular cell (aspect 
ratios r, = 2.03, r, = 1.19) filled with silicone oil (Prandtl number, Pr = 130) for 
different Rayleigh numbers, Ra (up to Ra = 75 Ra,, RaJ707). The basic structure of 
the flow field for this range of Ra consists of two rolls with their axes parallel to the 
shorter horizontal side. Both senses of rotation for the rolls are observed, 
corresponding to the two branches of the bifurcation. Particle image velocimetry, 
with a 5 mW He-Ne laser as the illuminating source, is used to measure the velocity 
field in the midplane of the cell. From it the vorticity field (out of plane component) 
and two-dimensional streamlines are calculated. The flow has been measured to be 
three-dimensional, even for very low Ra,  owing to the sidewall influence. The spatial 
features of the flow are shown to be dependent on both Ra and the sense of rotation 
of the rolls. Finally, a Fourier analysis of the velocity field is presented. The spatial 
and thermal dependences of the different Fourier terms are reported. The velocity 
field, in a first-order approximation, is quantitatively described. 

1. Introduction 
Different spatial configurations can be obtained in a Rayleigh-Be'nard convective 

flow depending on the geometrical characteristics of the fluid layer, the Prandtl 
number of the fluid and the Rayleigh number. This paper deals with high-Prandtl- 
number fluids contained in a three-dimensional rectangular box. The shape of the 
box is specified by the aspect ratios r, = LJL, and r, = L,/L,, where L,, L, are 
horizontal dimensions and L, is its height. 

When aspect ratios are large enough, sidewall effects can be neglected and the fluid 
layer can be considered infinite in extent. In this case, the convective motion begins 
a t  a critical Rayleigh number Ra, = 1707, when the fluid layer is confined above and 
below by rigid plates of good thermal conductivity (Chandrasekhar 1961). However, 
in the case of low-aspect-ratio boxes, the influence of sidewalls cannot be neglected. 
The theoretical treatment is then more difficult and numerical procedures must be 
used to solve the equations which govern the flow. Sidewalls have a further 
stabilizing effect on the onset of convective flow owing to the viscous drag which they 
introduce. It has been shown, theoretically (Davis 1967, 1968) and experimentally 
(Charlson & Sani 1970; Stork & Muller 1972), that the critical Rayleigh number is 
higher in small boxes than in large ones. Its value depends on r, and r, but also on 
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the thermal characteristics of the fluid and sidewalls. A general conclusion is that Ra, 
increases when r,, r, or the thermal conductivity of the sidewalls decreases. 

Just above Ra,, the spatial pattern preferred by the flow consists of a series of 
parallel and straight long rolls with their axes parallel to the shorter side of the box 
(Davis 1967; Stork & Muller 1972), even if r, and r, are large. The rolls turn 
clockwise or counterclockwise alternately in space. In  theory a given roll can turn in 
either sense with the same probability, but in practice any small imperfection in the 
experimental conditions removes the degeneracy. In  fact, owing to the thermal 
characteristics of the sidewalls, the way in which Ra is increased until just above Ra, 
(heating from below, cooling from above, doing it quickly or slowly) completely 
determines the sense of rotation of each roll (Berg6 & Dubois 1984). 

Most of the experimental work reported in the literature (Busse 1981 ; Zierep & 
Oertel 1981 ; Berg6 1981 ; Dubois 1981 ; Gollub, McCarriar & Steinmann 1982) is 
directed, in a global way, to  describing the spatial organization of the different stable 
patterns and the transitions between them when Ra is modified. But these 
descriptions do not tell us if the fluid motion is really two-dimensional or if it is 
exactly the same from one roll to another, for example. This information can only be 
obtained by measuring a local variable such as the velocity or the temperature 
perturbation. The most detailed quantitative information about the spatial 
properties of the flow that has been reported has been obtained from the pointwise 
velocity measurements, using laser Doppler velocimetry (Dubois & Berg6 1978 ; 
Gollub & Benson 1980). In large boxes, only flows a t  Ra close to Ra, (up to 
Ra x lORa,) have been studied (Dubois & Berg6 1978). This has nevertheless 
allowed comparisons to be made with a nonlinear theory based on a perturbation 
approach, developed by Normand, Pomeau & Velarde (1977). In  small boxes (Gollub 
& Benson 1980) there is some information about the spatial structure of a time- 
dependent flow, but the general relations between the spatial structure and the 
dynamical behaviour of the flow, and even the spatial structure itself, are still 
unknown. 

In this paper, we present a detailed study of the spatial properties of the 
Rayleigh-B6nard flow in a small box. The flow in a similar box has been extensively 
studied by Berg6 and Dubois (Dubois 1981 ; Dubois & Berg6 1981) but they have not 
considered either the global characteristics or spatial properties of low Ra flows. We 
have measured the velocity field by particle image velocimetry (§2), which allows 
simultaneous mapping of the two in-plane components a t  all the points of a plane. 
Near the onset of the connection, the pattern consists of two rolls with their axes 
parallel to the Y-direction. Owing to the sidewalls, the motion must be three- 
dimensional in the region in which their influence is important. Since i t  is not known 
how far i t  extends into the flow field, we have analysed the central plane (y = gY) 
which is the farthest from the sidewalls, and where the velocity components parallel 
to it must be the largest. We have studied flows up to Ra = 75Ra,, where 
Ra, = 1707. We have also generated the two symmetrical states corresponding to a 
given Ra in order to compare both spatial structures. Results obtained from this 
analysis are shown in $3 while the experimental set-up is described in $2.  

2. Experimental set-up 
2.1. Rayleigh-B4nard cell Ggure 1) 

The cell dimensions are L, = 25 mm, L,  = 14.6 mm and L, = 12.3 mm, yielding 
aspect ratios r, = 2.03 and r, = 1.19. The sidewalls are made of 20 mm thick 
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FIQURE 1. Cross-section of the Rayleigh-Be'nard cell : 0, copper ; m, Plexiglas. 

Specific Thermal Thermal 
Viscosity Density heat conductivity diffusivity Refractive 

V P CP K Dt index 
(crn2/s) (g/cm3) (cal/g "C) (cal/cm s "C) (cme/s) Pr = v /D,  n 

Silicone oil 0.1 0.93 0.45 3.2 x 10-4 7.65 x 130 1.399 

Plexiglas 1.18 0.35 4.4 x 1 0 - ~  10.76 x 10-4 1.492 
(at 25 "C) 

Copper 8.96 0.092 10 1.21 

TABLE 1. Physical properties of the Rayleigh-BBnard cell materials 

Plexiglas and the top and bottom of 10 mm thick copper. These materials have been 
chosen so that the thermal conductivity of the sidewalls is similar to that of the fluid 
while that of the horizontal boundaries is much higher (table 1) .  The walls are joined 
with Canada balsam. Fluid is introduced into the cell by means of a small hole made 
in one of the upper corners of the Plexiglas frame. 

The upper and lower boundaries are kept at the constant temperatures To and 
To + AT respectively, to within 0.01 "C. This is achieved by circulating water from 
two independent thermostatic baths. The temperature difference AT between the 
two plates is measured with four Chromel-Alumel thermocouples in series embedded 
in the copper blocks. The electromotive force produced by this system (163.2 pV/"C) 
is measured by a digital microvoltmeter with a precision of 1 pV (equivalent to 
0.006 "C). 

The cell is filled with silicone oil, whose physical properties are shown in table 1. 
The Prandtl number Pr is high : about 130 at 25 "C. All parameters in table have been 
taken from the table provided by the manufacturer. The fluid is seeded with 1.1 pm 
diameter latex particles, which had to be dried and powdered before introducing 
them into the fluid. The size distribution is 1.1-20 pm. 

2.2. Particle image velocimetry 
The local velocity in the field has been measured by particle image velocimetry, a 
powerful technique which allows the simultaneous measurement of two components 
of the velocity in all points of a plane. The technique consists of two steps: (a )  
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FIGURE 2.  Multiple exposure photographic recording system: L, 5 mW H e K e  laser; CH, 
electromechanical chopper ; L,. *5 microscope objective ; L,. W m m  focal length cylindrical lens. 

recording a multiple exposure photograph of a plane within the flow and ( b )  analysis 
of the photograph to obtain the velocity field. 

The experimental set-up for the first step is shown in figure 2. A sheet of light, with 
thickness less than 150 pm, is provided by a lincarly polarized 5 mW H e N e  laser, 
shaped with a suitable optical system. An electromechanical chopper, in the form of 
two blades which are opened and closed, controls the multiple exposures, allowing us 
to obtain pulses with a minimum duration of 6 ms a t  time intervals above 100 ms. 
Both parameters can be changed independently. Time intervals are chosen in order 
to obtain a maximum displacement between successive images of a few hundred 
microns. Typically this displacement should be equal to the radius of the 
interrogation beam used in the analysis process. Exposure times are chosen to be 
about one tenth of the time intervals. 

Light scattered by latex particles seeded in the flow is recorded by a Nikon FM2 
camera using a macro 55 mm lens with an extension ring. This system is aberration 
free even for magnifications as high as unity. Photographs were taken a t  this 
magnification with a f/4 aperture, providing a depth of field of 0.6 mm. The system 
produces particle images ranging from 12 pm to 23 pm diameter. Kodak Technical 
Pan 2415 film was used because of its very good resolution (about 320 lines/mm) with 
high sensitivity to red light (about 200 ASA) when developed with D-19 developer. 
In our set-up, about 20 ms of exposure time is needed to obtain an optical density 
D = 1.  Composite images were taken with about ten successive exposures 
superimposed. 

In  the second step of particle image velocimetry, several optical methods (Meynart 
1983 ; Pickering & Halliwell 1986-87 ; Short & Whiffen 1987 ; Arroyo et al. 1988a, b ,  c) 
can be used to analyse multiple exposure photographs. I n  this work we used a point- 
by-point procedure based on the evaluation of the Young’s fringes interference 
pattern obtained from each pointwise region in the photograph. This method 
provides accurate measurements of the local in-plane velocity vectors. Our optical 
processor has already been described elsewhere (Arroyo et al. 1988 b ) .  The photograph 
is illuminated by a low power He-Ne laser beam of about 0.7 mm diameter and the 
light intensity distribution (Young’s fringes) a t  the focal plane of a lens placed 
behind the photograph is observed. Fringes are recorded with a vidicon tube and 
digitized in a 128 x 128 pixel format with 128 gray levels. A VAX 11/780 computer 
is used for the digital image processing. 

The fringe orientation and frequency are directly related to the direction and the 
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FIGURE 3. Spatial study of the convective flow at Ra = 60.5RaC (Ra, = 1707) in the cell midplane 
(y = 7.3 mm) for two equivalent states corresponding t o  different bifurcation branches obtained by 
slow heating (images on the  left,) or fast heating (images on the right-hand size). ( a , f )  particle image 
photographs with 10 exposures of 40 ms at 400 ms (a)  and 10 exposures of 32 ms at 360 ms (f)  ; 
(b ,  g )  velocity vector maps from the experimental data. V,,, = 788 pm/s ( b )  and V,,, = 767 pm/s 
( 9 ) ;  ( c , h )  iso-V, maps. The increments between consecutive lines are AVz = 128.2 pm/s (c )  and 
AV, = 125.8 pm/s ( h ) ;  (d ,  i )  i s o - t  maps. The increments are A K  = 174.6 pm/s (d )  and 
A E  = 170.2 pm/s ( i ) ;  ( e , j )  isovorticity (?/-component) maps. The incremcnh are Aw = 115.5 x 
lW3 s ( e )  and A u  = 110.2 x 10 s-' (i). 
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magnitude of the velocity vector. As a study of the entire flow implies the analysis 
of many fringe systems, fast and automatic procedures are required. A one- 
dimensional integration technique with an algorithm which allows the automatic 
measurement of the fringe orientation is used here (Arroyo et al. 1988). The dynamic 
range of our set-up is about 15. 

3. Discussion of the results and conclusions 
3.1. Bifurcation experiments 

It has been observed that the heating routine determines the sense of rotation of the 
rolls in the convective pattern. In this work the cell is firstly thermostated at 25 O C ,  
a process that starts with the previous stabilization of the upper plate temperature. 
Later, the bottom plate temperature is raised until a predetermined Ra value is 
reached. The rate of heating (for Ra close to Ra,) is the factor that  determines the 
final (steady) rotation sense of the rolls. Low heating rates trigger a rising convective 
motion of the fluid in the central region of the cell bottom. In contrast, high rates of 
heating generate a descending fluid flow in that region. These two initial, ascending 
or descending, streams entirely determine the overall rotation sense of the two rolls. 
It is remarkable that after the convection is fully developed the sense of rotation of 
the rolls remains unchangeable, independent of the heating rate. 

The main features of the flow in the cell midplane a t  Ra = 60.5Rac for the two 
bifurcated patterns are presented in figure 3. Particle image photographs (figure 
3a,A show a very good visualization of the flow. Using these photographs the in- 
plane velocity fields are measured and displayed as velocity vector maps (figure 
3 b,  9 ) .  The maximum absolute velocity is about 770 pm/s and differs by less than 3 YO 
between the two flow patterns, which agrees with our experimental accuracy 
(2-3 YO). Data on the two in-plane velocity components (V,, 1;) and the y-component 
of the vorticity vector ( w )  obtained from the velocity field processing (Arroyo et al. 
1 9 8 8 ~ )  are displayed as isoline maps (figure 3c-e, h-j). All these maps clearly show 
the symmetry of the two flows with respect to the transformation z+L,-z and 
V,  + - V,, which also implies w + - w .  

3.2. Dependence on Ra 
3.2.1. Spatial features 

Some experimental results for the flow pattern in the 3.7 < Ra/Rac < 75 range 
studied are displayed in figures 4-6. Particle image photographs of the cell midplane 
and the corresponding measured velocity vector map (figure 4) show that rolls are 
very symmetrical and have a very circular shape, a t  low Ra values. At higher Ra, the 
rolls elongate, losing their horizontal symmetry plane. Other spatial features of the 
flow field are apparent from the iso-V, and iso-V, maps (figure 5 ) .  These latter change 
substantially when Ra increases, while the former retain the same essential features 
even a t  high Ra values. Moreover, the iso- V, maps resemble the corresponding two- 
dimensional convection maps in an infinite box. This indicates that the V, field is 
hardly affected by the presence of the walls. The opposite situation is found for the 
V ,  field, which attains a maximum Emax at  the x = &, plane and negative minima, 
Kmin, very close (2 mm) to the vertical walls. The ratio V,max/Kmin ranges from -2 
to -213 as Ra is increased. 

The isovorticity (y-component) maps (figure 6a-e) point out the presence of a zero- 
vorticity line a t  a spatial location rather stable against Ra variations. Outside that 
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FIGURE 4. Particle image photographs (left-hand side) and corresponding velocity vector maps 
(right-hand side) of the convective flow at the cell midplane (y = 7.3 mm) for different Ra values. 
(a , f )  Ra = 3.7RaC, Photographs with 7 exposures of 140 ms at 1.4 s (a ) ,  V,,, = 108 pm/s (f); ( b , g )  
Ra = 6.5Ra,, 8 exposures of 125 ms at 1.25s (b ) ,  V,,, = 202 pm/s ( 9 ) ;  ( c ,h )  Ra = 13.4RaC, 9 
exposures of 100 ms at 1.0 s (c),  V,,, = 284 pm/s ( h ) ;  (d ,  i )  Ra = 26.2RaC, 10 exposures of 65 ms at 
0.64s (d ) ,  V,,, = 329 pm/s ( i ) ;  ( e , j )  Ra = 39.ORaC, 19 exposures of 50 ms at 0.55s ( e ) ,  
V,,, = 489 pm/s (j) (Ra, = 1707). 
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FIGURE 5. Isovelocity component maps for T: (left-hand side) and V,  (right-hand side) for the same 
flows shown in figure 4. The increments between consecutive lines are:  AVz = 15.0 pm/s ( a )  and 
A E  = 23.9 pm/s (f) for Ra = 3.7 Ra, ; A t  = 30.6 pm/s ( b )  and A E  = 44.9 pms/s (9 )  for Ra = 6.5Ra, ; 
AVz = 50.6pm/s (c) and AK = 63.0 pm/s ( h )  for Ka = 13.4RaC; A t  = 72.0 pm/s ( d )  and 
A E  = 73.2 pm/s (i) for Ra = 26.2RaC: A t  = 94.3 pm/s ( e )  and A E  = 108.1 pm/s (j) for 
Ra = 39.ORaC (Ra, = 1707). 
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region, vorticity grows with Ra and the walls induce large vorticity gradients near 
the boundaries. In  contrast, the inner region shows a vorticity field rather less 
influenced by Ra changes. There are some spatial variations and a redistribution of 
the areas of maximum vorticity, which increases with Ra as must be expected, but 
these changes are less dramatic than in the external region. 

Finally, simple inspection of the two-dimensional streamlines (figure 6 f j )  clearly 
shows the three-dimensional character of the flow pattern, even a t  low Ra. The 
spiralling of the streamlines implies that  the gradient of the out-of-plane velocity 
component (aV,/ay) is non-zero. However, this spiralling of streamlines does not 
imply that V, is non-zero. For example, the V,-field at Ra = 6.5Ra, has been 
calculated from the V, and V ,  fields, obtained from the analysis of several parallel 
planes and application of the continuity equation as described by Arroyo et al. 
( 1 9 8 8 ~ ) .  Typical V,(y) and V,(y) functions, for a position corresponding to z = 12  mm, 
z = 6.6mm, are shown in figure 7. V,(y) is not shown as it is very similar to V,(y). 
Maximum values for these fields at Ra = 6.5Ra, are V,,,, = 150 pm/s, V,,,, = 
215 pm/s and V,,,, = 25 pm/s. It can be seen that V, is zero for y = &, (cell 
midplane) while aV,/ay is quite constant (and different from zero) in an extended 
region around this cell midplane. The two-dimensional maps for several planes in this 
central region are very similar (Arroyo et a1.1988c), corresponding to a quite constant 
aV,/a,. However, where V, takes its maximum absolute values, aV,/a, is zero and the 
two-dimensional streamlines are more likely to form closed lines. Therefore, we can 
say that the changes in the spiralling of the two-dimensional streamlines are directly 
related to changes in aV,/ay, which may or may not imply changes in the symmetry 
of the V,-field. 

The three-dimensionality of the flow has also been confirmed, even at Ra = 3.7 Ra,, 
by flow rate calculations in the following way. From the mass conservation theorem, 
and assuming that the density of the fluid is constant, the flow rate, Q ,  through any 
closed surface, S, where 

Q = $Y.dS, (1)  

is zero. If we take a parallelepiped limited by x = 0 and x = L,, z = 0 and z = z,, 
y = yo -+Ay and y = yo ++Ay the flow rate, as generalized from ( l ) ,  may be expressed 
as 

(2) 
Assuming that Ay is small enough, (2) simplifies to 

Q = Ay[~SOaV, /ay(z ,y0 ,z )dxdz+ V,(x,yo,zo)dx 1 = 0. 
0 0  

(3) 

From (3) it  can be deduced that if the flow is two-dimensional (aV,/ay = 0 
everywhere), the second integral, which will be called flow rate through a Z-line (Qz), 
will be zero. If this &, is not zero, the flow will be three-dimensional. A relative value - -  
for Q, is defined by 

where 
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FIGURE 6 .  Isovorticity maps for y-component (left-hand side) and two-dimensional streamline 
maps (right-hand side) for the same flows shown in figure 4. The increments between consecutive 
lines are:  Au = 12.5 x s-l ( b )  for Ra = 6.5RaC; 
Au = 33.4 x s-l ( c )  for Ra = 13.4RaC; Aw = 47.3 x ( d )  for Ra = 26.2RaC; 
A@ = 62.8 x 

s-' ( a )  for Ra = 3 .7RaC;  Aw = 20.7 x 

s-' ( e )  for Ra = 39.ORa, (Ra, = 1707). 
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FIGURE 7 .  Dependence of V,  ( x ) and V ,  (0 )  on y for x = 12 mm, z = 6.6 mm. 

We have found that the flow rate &,(YO) is not zero even a t  R a  = 3.7 Ra,  (table 2). 
This confirms the three-dimensionality of the flow. No information a t  all can be 
obtained from these calculations about the absolute value of either aV,/ay or V,. 

With respect to the spatial structure of the flow, our measurements together with 
some pertinent qualitative observations allow us to  deduce that the flow has the 
same configuration (described by Dubois & Berg6 (1981) as a two X roll and no Y roll 
(2,O roll) pattern) over the whole range of R a  analysed here. The main points leading 
to this conclusion are the following : 

(a )  The visualization of the whole flow, obtained by sweeping the position of the 
illuminating plane through the whole cell, clearly shows that the x = gz and y = &, 
planes are symmetry planes for the whole range of experiments. This is clearly 
incompatible with two X rolls and one Y roll (2, 1 roll) patterns. 

( b )  A transition to a two X roll and two Y roll (2 ,2  roll) pattern has been observed 
at Ra x 125Ra,. As expected, this transition is preceded by a spectacular spatial 
reorganization of the flow, followed by a very noticeable change in the flow structure. 
It must be remarked that this reorganization is very apparent even when only the 
cell midplane is being observed. The spatial features of the flow in the cell midplane 
for the 2 , 2  roll pattern (Arroyo et al. 19883) are clearly different from the flow 
patterns in the present experiments. 

(c) In  the present range of experiments we have not found any visual evidence of 
a discontinuous change in the spatial features of the flow. Such discontinuities would 
be indicative of a transition to a different configuration. The changes in the spiralling 
sense of the two-dimensional streamlines, which are very apparent at R a  x 30 Ra, 
(figure 6i, j )  could be indicative of a change of structure. This possibility has been 
eliminated since a careful examination of the flow around this value of R a  has shown 
that there is not any discontinuity in the velocity field and that the flow remains 
symmetric with respect to the ( y  = $5,) plane. 

( d )  The dependence of V, and V ,  on y (figure 7)  shows that the flow has no Y roll 
since the sign of V ,  does not change along Y.  This definitely implies that  the flow 
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4 m m )  &,(%I 
0.95 0.7 
1.89 1.6 
2.84 6.2 
3.78 11.4 
4.73 14.9 
5.68 18.1 
6.62 21.8 
7.57 25.3 
8.52 28.7 
9.46 30.5 

10.41 31.2 
11.35 37.5 

TABLE 2. Flow rates, Q2(%), trough several 2-lines for Ra = 3.7Ra, 

corresponds to the 2,O roll pattern. By the present experiments, it can also be said 
that this 2, 0 roll pattern has a more complex structure than formerly supposed. 

3.2.2. Critical Rayleigh number Ra; 
Little information can be found in the literature for predicting the value of the 

critical Rayleigh number (Ra;) in small boxes. Some theoretical calculations on the 
dependence ofRa; with the aspect ration r, have been reported (Oertell981; Buhler, 
Kirchartz & Oertel 1979). These predictions were me,de for a cell with Pr = 00, 

perfectly rigid heat conducting sidewalls and horizontal boundaries, and an aspect 
ratio (r,) fixed a t  4. In addition, Frick & Clever (1982) reported calculations for a cell 
with perfect isolators for sidewalls, taking Pr = 00 and r, = 00. However, the 
experiments of Koster, Ehrard & Muller (1986) demonstrate that Ra; in a cell with 
Plexiglas sidewalls (poor heat conductors), with aspect ratios r, = 0.1 and r, = 2.76, 
and Pr = 235 is an order of magnitude greater than the value predicted by Frick & 
Clever (1982). This discrepancy can be attributed to the different aspect ratio r,. 
Therefore, a complete analysis of the dependence of Ra: with r,, r,, Pr and 
sidewalls conductivity would be needed for a theoretical prediction of Ra, value in 
each particular case. As this analysis is not easily done, it is preferable to measure Rai 
experimentally in the cell studied. 

I n  this work we have not paid any special attention to the region Ra w Rai, which 
would have required a much more precise experimental set-up for temperature 
control and stabilization. However, measurements were taken which permitted an 
estimate of Ra; to accuracies sufficient for the purpose of the property modelization, 
which will be described later. Analysis of the dependence of P on Ra/Ra, (figure 8) 
a t  several points where V, or V ,  take their highest absolute value shows that has 
a nonlinear dependence on Ra/Ra,  which, in turn, depends on the measurement 
point. In  contrast, VZ, depends linearly on RalRa, even for Ra values as high as 
39Ra,. This reproduces a result first found by Berg6 & Dubois (1978) in their study 
of high-aspect-ratio boxes : V,,,, varies as ef for a range of Ra higher than expected. 
This fact has allowed us to calculate Rah. A linear Ism fitting of VZ, = f(Ra/Ra,) has 
provided the value RailRa, = 2.8k0.1 from the extrapolation at  V, = 0. The same 
procedure applied to the lower V ,  values leads to  the same extrapolated Ra; value. 
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3.2.3. Fourier analysis of the velocity $eld 
Before presenting our analysis, we first remark that there are no theoretical results 

for predicting the velocity field in a finite box. The most significant calculations made 
in that sense for infinite boxes have been reported by Schluter, Lortz & Busse (1965) 
and Normand et al. (1977), with experimental verification provided by Dubois & 
Berg6 (1978). As they present an  approach that seems to be the most convenient one 
for analysing the problem, we will try to follow it as far as possible. 

In  infinite boxes, the flow is two-dimensional and presents a roll pattern with 
spatial frequency f o  = Sz. The two velocity components are obtained from the usual 
expansion in terms of a small parameter E of the form 

v = dv,+sV,+&+..., (6) 

where E = Ra/Ra, - I .  This expansion, when restricted to the first terms in E( < E;) is 
valid only for low values of E .  V,, V,, V, are found to be harmonic modes of the velocity 
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(their x-dependence is mainly as cos(21i%fo x )  with n = 1 , 2 , 3  respectively) and to 
have a very definite roll pattern. The procedure used by Dubois & Berg6 (1978) for 
obtaining V,, V,, V, is the following: 

(a )  Both velocity components (V, and V,) are expanded, as functions of X ,  in a 
Fourier series with the same frequencies, which are multiples of to. 

( 6 )  The Fourier expansions are performed for several Z-values and for several s- 
values. The s-dependence of the different terms of the expansions is also obtained. 

(c) All terms depending on s: are associated with V,, the terms depending on E with 
V, and the terms depending on e: with V,. 

Before using the same procedure for analysing our measurements, some comments 
are required regarding its suitability to our problem since the flow is not two- 
dimensional (as we pointed out earlier) and may not present a clear periodicity along 
X as the flow has only two rolls, which are affected by the presence of the cell walls. 

First of all, we should point out that even though it  is always possible to expand 
any function by a Fourier series, such an expansion is prudent only when the 
function needs a small number of terms for its equivalent representation. This is true 
in our case, where V’ and V ,  can be expanded as 

5 

(7) 
5 

n=1 I V, = V,, sin (2nxx/L,), 

V ,  = V,, sin ( (2n-  1 )  xx/L,). 
n=1 

Owing to the different symmetry exhibited by each function (figure 9), the 
frequencies of each expansion are also different, being an even multiple of v,, for 
V, and an odd multiple for V,. We should point out that the expression for V, is similar 
to  the expression in infinite boxes and that only the first two terms are significant for 
the whole range of B analysed here. All five terms of V,  are important for the highest 
6, but only two of them are needed at  low E. Since the spatial frequencies included in 
both expansions are different, we cannot properly speak of harmonic modes of the 
velocity vector field. 

Another point to be remarked on is that, owing to the three-dimensionality of the 
flow, a complete analysis of the velocity field would imply a Fourier expansion on x 
and y of the three velocity components. No expansion on y can be made as only the 
y = plane has been analysed for each s. Nevertheless, as V, and V,  take their 
maximum value in this plane for the whole range of experiments, their expansion 
along x is still meaningful. 

Finally, we should say something about how the presence of the walls a t  x = 0, L, 
might change the velocity field of the flow and consequently the form of the Fourier 
expansions. First, we assumed that the sidewall effects could be included in an 
envelope function which, multiplied by the velocity field in an infinite box, would fit 
the velocity field in the small box. This envelope, whose analytical form is unknown, 
should be zero at the walls and increase to its maximum value around the x = gZ 
position. The Fourier expansion for V ,  (equation (7)) suggests that this envelope 
could be a sinusoidal function with frequency uo. If this is correct, we should find that 
our measurements a t  e = 0.32 are predicted well using only the first harmonic mode 
taken from the infinite box. This would imply that V,, and V,, in (7)  should take the 
same value. This is clearly not the case since we have measured V,, as much larger 
than K1. The most definite evidence that this inclusion of the sidewall effects in an 
envelope function cannot fit our measurements is provided by the fact that V ,  goes 
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FIQURE 9. Velocity components for three Ra values: A, E = 0.32; 0, E = 11.11; +, E = 23.04. 

( a )  Vz(s), z = 10.4 mm, ( b )  y(s), z = 6.6 mm. 

to zero a t  x = 0.27Lx, 0.73Lx, while it goes to  zero a t  x = 0.25Lz, O.75Lx in an infinite 
box. Whatever expression we take for the envelope, the position of the zero values 
cannot change. Furthermore, this envelope theory does not fit a t  all with the Fourier 
expansion for V'. 

The other possibility we have investigated is whether the effect of the sidewalls on 
the x-dependence of V, and V ,  is similar to the effect of the horizontal boundaries on 
the z-dependence of V, and V,. For example, it is remarkable that if we take one of 
the rolls in the infinite box, the dependence of V,, V ,  on x and on z are different. Along 
x, both have the same fundamental frequency, fo, but along z, V ,  has the same 
frequency fo while the fundamental frequency of V, is 2 f,,. Furthermore, at small E ,  

where only the fundamental mode is important, VJx)  and V,(x) are pure sinusoidal 
functions while VJz)  and V,(z )  have a rather complicated analytical expression 
(Chandrasekhar 1961 ; Schluter et al. 1965), which includes hyperbolic functions. 
Something very similar happens with Vx(z) and V,(z )  for the second harmonic mode 
in an infinite box (Normand et ~1 .1977;  Schluter et al. 1965). We have checked that 
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FIQURE 10. Fourier amplitudes for three Ra values: A, E = 0.32; 0 ,  E = 11.11; +, E = 23.04. 

( a )  y1; ( b )  v,z; (c) El; (4 K 2 ;  ( e )  K 3 ;  (f)  L; (9) E5. 

the Fourier expansions which best fit them are similar to  (7) (interchanging x by z 
everywhere) with only two terms in the expansions. The relative values of the 
different expansion coefficients are similar in both cases. The main differences are 
found in V,. They arise from the fact that the second harmonic mode in an infinite 
box is a two-dimensional flow while our flow is three-dimensional. Now it becomes 
quite clear that even the ‘fundamental’ mode V, (which is not a true harmonic mode) 
in a small box is rather complicated. Nevertheless, we will show that it is possible to 
describe this ‘fundamental ’ mode following the procedure described in the preceding 
paragraphs. Further theoretical development would be needed for a realistic search 
of the proper harmonic modes in a small box. However, we think that the results 
presented here will be useful whenever a theory is available and even they can help 
in the development of such a theory. 

We start by expanding V, and V ,  in a Fourier series following (7) and do so for z = 0 
to L,, each 0.5 mm and for each E .  The Fourier amplitudes V,, ( n  = 1,2) and 
V,, (n = 1, 5) are shown in figure 10 (as functions of z )  for three different e-values. It 
can be seen that the form of V,,(z) remains quite unchanged with respect to the 
variation in E ,  apart from a slight displacement of its maximum and minimum toward 
the walls. It resembles the same function in infinite boxes (Normand et al. 1977). V,, is 
always smaller than V,, (V,,,,, x ~V,,,,,) and is quite different from its equivalent 
in infinite boxes. At low e, V,, is similar to V,,. When E increases, the maximum and 
minimum of V,, change smoothly and two sublayers appear. From E = 11.11 the 
sublayers remain practically unchanged, with Vz2 resembling the V,, in infinite boxes, 
although it is not as symmetric as it is in infinite boxes. 

In  the expansion for V,, V,, is always the most important term. Its z-dependence is 
similar to the first harmonic dependence in infinite boxes. Its form remains quite 
unchanged with respect to e, a behaviour similar to that of V,.. V,, is similar to V,, 
at  low E but two sublayers, whose positions remain constant from E = 11.11, appear 
in the same way as for V,,, as e increases. The ratio ~ l m a x / ~ 2 m a x  is now larger at low 
than at high E .  The other three terms for V ,  are negligible at low e, but grow larger 
than V,, a t  high e. 
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FIGURE 1 1 .  E dependence of the Fourier amplitudes V,, for three z-values : 
A, z =  1.42mm; 0, z = 6 . 1 5 m m ;  +, z =  10.88mm. (a) Vzl; (b)Vz2. 

We now examine the €-dependence of the expansion coefficients from z = 0 t o  L, 
at 0.5 mm intervals. Figures 11 and 12 show this €-dependence for three values 
( z  = 1.42, 6.15, 10.88 mm for V, and z = 2.37, 7.10, 10.88 mm for V,) where either 
Vz2 or V,, are maximum or minimum. Also shown is the fitting to  powers of d which 
produces the best correlation coefficient. The coefficients of the fitting are shown in 
table 3. It can be seen from figure 11,  that V,, shows a clear linear dependence in ef. 
I ts  maximum value occurs a t  z = 2.37 mm where i t  can be expressed as V,, = 
115 & (pm/s). This measured value differs by 6 % from the value predicted by the 
theory for an infinite box, when applied to our small box. The analysis of V,, shows 
clearly that a term in d along with a term in E is required for a good fit. This is not 
surprising as V,, is quite noticeable even a t  low 8. The z-dependences of both terms 
(& and E )  are similar too, but not as symmetric as those of V,, (figure 10a). The 
maximum value for both d and 8 terms occurs at about 2.37 mm where V,, can be 
expressed as V,, = - 43 6 + 7 s(pm/s). 

The €-dependence of V,, is more complicated to  analyse as it does not show a clear 
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dependence. We started by fitting the five coefficients to a third-degree polynomial 
in $. Then, to simplify the fitting, we tried to  remove the small coefficients and check 
whether the fitting was still correct. In  this way, we have checked that not even the 
strongest coefficient may be fit with only one term. Two (for V,,, V,, and V,,) and even 
three terms (for V,, and E2) are needed. With regard to its z-dependence, all the terms 
(except the E term for V,, and 5,) look like V,, (figure 10d). The value of the coefficient 
for z = 7.10 mm then gives the maximum amplitude of each term. 

Finally, by putting together the coefficients in we may describe the structure of 
5. I ts  maximum amplitudes may be expressed as 

(8) 
VZmax(z) = ( 1  15 sin (2nx/L,) - 43 sin (4nx/L,)) &,I 
Krnax(z) = (1  16 sin (nx/L,) - 157 sin (3nx/L,))  &.j 

By taking into account all the results concerning the spatial variation of the 
velocity, we may conclude that V, may be accounted for by two rolls inscribed in the 
whole ccll like the rolls depicted in figure 4(a). 
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I 1 

Term z(mm) €I 6 €2 

v,, 1.42 92.8 
(Pm/s) 6.15 15.4 

10.88 - 112.1 
v,, 1.42 - 38.0 3.91 

(Fm/s) 6.15 21.9 - 1.25 
10.88 9.5 - 3.48 

v,, 2.37 25.4 - 16.1 1.78 
( w / 4  7.10 115.8 -47.3 4.82 

10.88 34.9 - 10.1 -0.47 
v,, 2.37 - 73.9 22.0 -4.34 

( W s )  7.10 - 157.4 51.5 -8.09 
10.88 -47.9 26.3 - 5.00 

v,, 2.37 7.77 - 2.30 
( w / s )  7.10 -4.99 -0.96 

10.88 -0.12 -0.89 
K 4  2.37 -0.89 -0.96 

(Pm/s) 7.10 - 8.58 -0.59 
10.88 - 2.36 -0.39 

v,, 2.37 - 2.89 -0.44 
( W s )  7.10 - 1.23 -0.75 

10.88 - 1.24 -0.23 

TABLE 3. Coefficients of the V' and V,  expansions 

Concerning the structure of V, we see that only V,, is necessary for describing the 
V, component while all five V,, terms have a contribution in c. Of these, V,, and V,, are 
the most significant terms, even though the other three cannot be neglected. The 
different symmetry of the terms in this V, mode does not allow its description as a 
roll pattern. 

The structure of V, is even more difficult to  analyse as no significant value for V,, 
or the cj dependence of V,, has been found. With respect to V,, we should remark 
again that all five terms contribute to V, 

4. Conclusions 
A detailed study of the flow in the mid-plane of a Rayleigh-Be'nard cell with small 

aspect ratios (r, = 2,  r, = 1.2) has been presented. It has been found that the critical 
Rayleigh number for this cell is Rah = (2.8+0.1)RaC, where Ra, = 1707. Flows from 
Ra = 0.32Rah approximately up to 2 5 R 4 ,  corresponding to the so-called 2,O roll 
pattern, have been studied. The cross-section of the rolls is perfectly circular a t  very 
low Ra, but loses symmetry with respect to the horizontal axis a t  higher Ra. A t  a 
given Ra, two different states corresponding to different branches of the bifurcation 
have been observed. These two states are symmetric with respect to the 
transformation z + L, - z ,  V ,  --f - V,  and w + - o. The flow pattern is three-dimensional 
even at the lowest Ra analysed (Ra = 0.32Rah). The Fourier expansion of V,(s) and 
V,(x) shows different spatial frequencies, which implies that the complete velocity 
vector field cannot be described in terms of spatial harmonic modes. The V, expansion 
has the same fundamental frequency and similar amplitude and €-dependence as it has 
in infinite boxes, corresponding to a small sidewall effect on this component. Even so, 
in the first-order approximation for the velocity field there is an additional small, but 
non-negligible, contribution of the second term of the Fourier expansion. In  contrast, 
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V ,  is more strongly affected by the sidewalls. Again, two terms are needed in the first- 
order approximation, but now the other expansion terms become comparable quite 
quickly as e increases. The velocity field in this first-order approximation reproduces 
quite well the measurements at  low Ra and can be accounted for by two rolls 
inscribed in the whole cell. The second- and third-order approximations cannot be 
easily described as roll patterns. 

The authors would like to thank Professor M. Quintanilla for many helpful 
discussions on the particle image velocimetry and T. Yonte for her experimental 
assistance. 
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